PROBLEM 4-6a

Statement: The link lengths and value of θ_{2} for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles θ_{3} and θ_{4}. Determine the Grashoff condition.
Given:
Link $1 \quad d:=6 \cdot$ in
Link $2 \quad a:=2 \cdot$ in
Link $3 \quad b:=7 \cdot$ in
Link $4 \quad c:=9 \cdot$ in
$\theta_{2}:=30 \cdot \mathrm{deg}$

Solution: See figure below for one possible solution. Also see Mathcad file P0406a.

1. Lay out an $x y$-axis system. Its origin will be the link 2 pivot, O_{2}.
2. Draw link 2 to some convenient scale at its given angle.
3. Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3 .
4. Locate pivot O_{4} on the x-axis at a distance from the origin equal to the given length of link 1 .
5. Draw a circle with center at O_{4} and a radius equal to the given length of link 4.
6. The two intersections of the circles (if any) are the two solutions to the position analysis problem, crossed and open. If the circles don't intersect, there is no solution.
7. Draw links 3 and 4 in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure their angles θ_{3} and θ_{4} with respect to the x-axis. From the solution below,

$$
\begin{array}{lll}
\text { OPEN } & \theta_{31}:=88.84 \cdot \mathrm{deg} \\
& \theta_{41}:=117.29 \cdot \mathrm{deg} \\
& & \\
\text { CROSSED } & \theta_{32}:=360 \cdot \mathrm{deg}-115.21 \cdot \mathrm{deg} & \theta_{32}=244.790 \mathrm{deg} \\
& \theta_{42}:=360 \cdot \mathrm{deg}-143.66 \cdot \mathrm{deg} & \theta_{42}=216.340 \mathrm{deg}
\end{array}
$$

8. Check the Grashof condition.

Condition $(a, b, c, d)=$ "Grashof"

$$
\operatorname{Condition}(a, b, c, d):=\left\lvert\, \begin{aligned}
& S \leftarrow \min (a, b, c, d) \\
& L \leftarrow \max (a, b, c, d) \\
& S L \leftarrow S+L \\
& P Q \leftarrow a+b+c+d-S L \\
& \text { return "Grashof" if } S L<P Q \\
& \text { return "Special Grashof" if } S L=P Q \\
& \text { return "non-Grashof" otherwise }
\end{aligned}\right.
$$

PROBLEM 4-7a

Statement: The link lengths and value of θ_{2} for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, find all possible solutions (both open and crossed) for angles θ_{3} and θ_{4} using the vector loop method. Determine the Grashof condition.
Given:
Link $1 d:=6 \cdot \mathrm{in}$
Link $2 \quad a:=2 \cdot i n$
Link $3 b:=7 \cdot$ in
Link $4 \quad c:=9 \cdot$ in
$\theta_{2}:=30 \cdot \mathrm{deg}$
Two argument inverse tangent

$$
\operatorname{atan} 2(x, y):=\left\{\begin{array}{l}
\text { return } 0.5 \cdot \pi \text { if } x=0 \wedge y>0 \\
\text { return } 1.5 \cdot \pi \text { if } x=0 \wedge y<0 \\
\text { return atan }\left(\left(\frac{y}{x}\right)\right) \text { if } x>0 \\
\operatorname{atan}\left(\left(\frac{y}{x}\right)\right)+\pi \text { otherwise }
\end{array}\right.
$$

Solution:
 See Mathcad file P0407a.

1. Determine the values of the constants needed for finding θ_{4} from equations 4.8 a and 4.10 a .

$$
\begin{array}{ll}
K_{1}:=\frac{d}{a} & K_{2}:=\frac{d}{c} \\
K_{1}=3.0000 & K_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 \cdot a \cdot c} \\
A:=\cos \left(\theta_{2}\right)-K_{1}-K_{2} \cdot \cos \left(\theta_{2}\right)+K_{3} & A=-0.7113 \\
B:=-2 \cdot \sin \left(\theta_{2}\right) & B=-1.0000 \\
C:=K_{1}-\left(K_{2}+1\right) \cdot \cos \left(\theta_{2}\right)+K_{3} & C=3.5566
\end{array}
$$

2. Use equation 4.10 b to find values of θ_{4} for the open and crossed circuits.

$$
\begin{array}{lll}
\text { Open: } & \theta_{41}:=2 \cdot\left(\operatorname{atan} 2\left(2 \cdot A,-B-\sqrt{B^{2}-4 \cdot A \cdot C}\right)\right) & \theta_{41}=477.286 \mathrm{deg} \\
& \theta_{41}:=\theta_{41}-360 \cdot \mathrm{deg} & \theta_{41}=117.286 \mathrm{deg} \\
\text { Crossed: } & \theta_{42}:=2 \cdot\left(\operatorname{atan} 2\left(2 \cdot A,-B+\sqrt{B^{2}-4 \cdot A \cdot C}\right)\right) & \theta_{42}=216.340 \mathrm{deg}
\end{array}
$$

3. Determine the values of the constants needed for finding θ_{3} from equations 4.11 b and 4.12 .

$$
\begin{array}{ll}
K_{4}:=\frac{d}{b} \quad K_{5}:=\frac{c^{2}-d^{2}-a^{2}-b^{2}}{2 \cdot a \cdot b} & K_{4}=0.8571 \\
D:=\cos \left(\theta_{2}\right)-K_{1}+K_{4} \cos \left(\theta_{2}\right)+K_{5} & K_{5}=-0.2857 \\
E:=-2 \cdot \sin \left(\theta_{2}\right) & D=-1.6774 \\
F:=K_{1}+\left(K_{4}-1\right) \cdot \cos \left(\theta_{2}\right)+K_{5} & E=-1.0000 \\
& F=2.5906
\end{array}
$$

4. Use equation 4.13 to find values of θ_{3} for the open and crossed circuits.

$$
\begin{array}{lll}
\text { Open: } & \theta_{31}:=2 \cdot\left(\operatorname{atan} 2\left(2 \cdot D,-E-\sqrt{E^{2}-4 \cdot D \cdot F}\right)\right) & \theta_{31}=448.837 \mathrm{deg} \\
& \theta_{31}:=\theta_{31}-360 \cdot \mathrm{deg} & \theta_{31}=88.837 \mathrm{deg} \\
\text { Crossed: } & \theta_{32}:=2 \cdot\left(\operatorname{atan} 2\left(2 \cdot D,-E+\sqrt{E^{2}-4 \cdot D \cdot F}\right)\right) & \theta_{32}=244.789 \mathrm{deg}
\end{array}
$$

5. Check the Grashof condition.

$$
\text { Condition }(a, b, c, d):=\left\lvert\, \begin{aligned}
& S \leftarrow \min (a, b, c, d) \\
& L \leftarrow \max (a, b, c, d) \\
& S L \leftarrow S+L \\
& P Q \leftarrow a+b+c+d-S L \\
& \text { return "Grashof" if } S L<P Q \\
& \text { return "Special Grashof" if } S L=P Q \\
& \text { return "non-Grashof" otherwise }
\end{aligned}\right.
$$

Condition $(a, b, c, d)=$ "Grashof"

PROBLEM 4-9a

Statement: The link lengths, value of θ_{2}, and offset for some fourbar slider-crank linkages are defined in Table P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles θ_{3} and slider position d.
Given:
Link $2 a:=1.4 \cdot \mathrm{in}$
Link $3 \quad b:=4 \cdot$ in
Offset $\quad c:=1 \cdot$ in

$$
\theta_{2}:=45 \cdot d e g
$$

Solution: \quad See figure below for one possible solution. Also see Mathcad file P0409a.

1. Lay out an $x y$-axis system. Its origin will be the link 2 pivot, O_{2}.
2. Draw link 2 to some convenient scale at its given angle.
3. Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3 .
4. Draw a horizontal line through $\mathrm{y}=\mathrm{c}$ (the offset).
5. The two intersections of the circle with the horizontal line (if any) are the two solutions to the position analysis problem, crossed and open. If the circle and line don't intersect, there is no solution.
6. Draw link 3 and the slider block in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure the angle θ_{3} and length d for each circuit. From the solution below,

$$
\begin{aligned}
& \theta_{31}:=360 \cdot \mathrm{deg}-179.856 \cdot \mathrm{deg} \quad \theta_{31}=180.144 \mathrm{deg} \\
& \theta_{32}:=-0.144 \text { deg } \quad d_{1}:=4.990 \cdot \text { in } \quad d_{2}:=-3.010 \cdot \text { in }
\end{aligned}
$$

PROBLEM 4-10a

Statement: The link lengths, value of θ_{2}, and offset for some fourbar slider-crank linkages are defined in Table P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a, using the vector loop method, find all possible solutions (both open and crossed) for angles θ_{3} and slider position d.

$$
\begin{array}{llll}
\text { Given: } & \text { Link } 2 & a:=1.4 \cdot \text { in } & \text { Link } 3 \quad b:=4 \cdot i n \\
& \text { Offset } & c:=1 \cdot i n & \theta_{2}:=45 \cdot d e g
\end{array}
$$

Solution: \quad See Figure P4-2 and Mathcad file P0410a.

1. Determine θ_{3} and d using equations 4.16 and 4.17.

Crossed:

$$
\begin{array}{ll}
\theta_{32}:=\operatorname{asin}\left(\frac{a \cdot \sin \left(\theta_{2}\right)-c}{b}\right) & \theta_{32}=-0.144 \mathrm{deg} \\
d_{2}:=a \cdot \cos \left(\theta_{2}\right)-b \cdot \cos \left(\theta_{32}\right) & d_{2}=-3.010 \mathrm{in}
\end{array}
$$

Open:

$$
\begin{array}{ll}
\theta_{31}:=\operatorname{asin}\left(-\frac{a \cdot \sin \left(\theta_{2}\right)-c}{b}\right)+\pi & \theta_{31}=180.144 \mathrm{deg} \\
d_{1}:=a \cdot \cos \left(\theta_{2}\right)-b \cdot \cos \left(\theta_{31}\right) & d_{1}=4.990 \mathrm{in}
\end{array}
$$

PROBLEM 4-11a

Statement: \quad The link lengths and the value of θ_{2} and γ for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row a, draw the linkage to scale and graphically find both open and closed solutions for θ_{3} and θ_{4} and vector \mathbf{R}_{B}.
Given:
Link $1 \quad d:=6 \cdot$ in \quad Link $2 \quad a:=2 \cdot$ in
Link $4 \quad c:=4 \cdot i n$

$$
\gamma:=90 \cdot \mathrm{deg}
$$

$$
\theta_{2}:=30 \cdot \mathrm{deg}
$$

Solution: \quad See figure below for one possible solution. Also see Mathcad file P04011a.

1. Lay out an $x y$-axis system. Its origin will be the link 2 pivot, O_{2}.
2. Draw link 2 to some convenient scale at its given angle.

3a. If $\gamma=90 \mathrm{deg}$, locate O_{4} on the x-axis at a distance equal the length of link $1(d)$ from the origin. Draw a circle with center at O_{4} and radius equal to the length of link $4(c)$. From point A, draw two lines that are tangent to the circle. The points of tangency define the location of the points B for the open and crossed circuits.
3b. When γ is not 90 deg there are two approaches to a graphical solution for link 3 and the location of point $B: 1$) establish the position of link 4 and the angle γ by trial and error, or 2) calculate the distance from point A to point B (the instantaneous length of link 3). Using the second approach, from triangle $O_{2} A O_{4}$

and, from triangle $A O_{4} B$ (for the open circuit)

$$
A O_{4}^{2}=b^{2}+c^{2}-2 \cdot b \cdot c \cdot \cos (\pi-\gamma)
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are the lengths of links $2,3,4$, and 1 , respectively. Eliminating $A O_{4}$ and solving for the unknown distance b for the open branch,

$$
\begin{aligned}
& b_{1}:=\frac{1}{2} \cdot\left[2 \cdot c \cdot \cos (\pi-\gamma)+\sqrt{(2 \cdot c \cdot \cos (\pi-\gamma))^{2}-4 \cdot\left(c^{2}-a^{2}-d^{2}+2 \cdot a \cdot d \cdot \cos \left(\theta_{2}\right)\right)}\right. \\
& b_{1}=1.7932 \mathrm{in}
\end{aligned}
$$

For the closed branch: $\quad A O_{4}^{2}=b^{2}+c^{2}-2 \cdot b \cdot c \cdot \cos (\gamma) \quad$ and

$$
b_{2}:=\frac{1}{2} \cdot\left[2 \cdot c \cdot \cos (\gamma)+\sqrt{(2 \cdot c \cdot \cos (\gamma))^{2}-4 \cdot\left(c^{2}-a^{2}-d^{2}+2 \cdot a \cdot d \cdot \cos \left(\theta_{2}\right)\right)}\right]
$$

$$
b_{2}=1.7932 \mathrm{in}
$$

Draw a circle with center at point A and radius b_{1}. Draw a circle with center at O_{4} and radius equal to the length of link $4(c)$. The intersections of these two circles is the solution for the open and crossed locations of the point B.
4. Draw the complete linkage for the open and crossed circuits, including the slider. The results from the graphical solution below are:

$$
\begin{aligned}
& \text { OPEN } \quad \theta_{31}:=-127.333 \cdot d e g \quad \text { CROSSED } \quad \theta_{32}:=100.959 \cdot d e g \\
& \theta_{41}:=142.666 \cdot \mathrm{deg} \quad \theta_{42}:=-169.040 \cdot \mathrm{deg} \\
& R_{B 1}:=3.719 \text { at } 40.708 \mathrm{deg} \\
& R_{B 2}:=2.208 \text { at }-20.146 \mathrm{deg}
\end{aligned}
$$

PROBLEM 4-12a

Statement: \quad The link lengths and the value of θ_{2} and γ for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row a, using the vector loop method, find both open and closed solutions for θ_{3} and θ_{4} and vector \mathbf{R}_{B}.
Given:
Link $1 \quad d:=6 \cdot$ in \quad Link $2 \quad a:=2 \cdot i n$
Link $4 \quad c:=4 \cdot$ in $\quad \gamma:=90 \cdot \mathrm{deg} \quad \theta_{2}:=30 \cdot \mathrm{deg}$
Two argument inverse tangent

$$
\operatorname{atan} 2(x, y):=\left\{\begin{array}{l}
\text { return } 0.5 \cdot \pi \text { if } x=0 \wedge y>0 \\
\text { return } 1.5 \cdot \pi \text { if } x=0 \wedge y<0 \\
\text { return atan }\left(\left(\frac{y}{x}\right)\right) \text { if } x>0 \\
\operatorname{atan}\left(\left(\frac{y}{x}\right)\right)+\pi \text { otherwise }
\end{array}\right.
$$

Solution: \quad See Mathcad file P0412a.

1. Determine the values of the constants needed for finding θ_{4} from equations 4.8 a and 4.10a.

$$
\begin{aligned}
& P:=a \cdot \sin \left(\theta_{2}\right) \cdot \sin (\gamma)+\left(a \cdot \cos \left(\theta_{2}\right)-d\right) \cdot \cos (\gamma) \quad P=1.000 \text { in } \\
& Q:=-a \cdot \sin \left(\theta_{2}\right) \cdot \cos (\gamma)+\left(a \cdot \cos \left(\theta_{2}\right)-d\right) \cdot \sin (\gamma) \quad Q=-4.268 \mathrm{in} \\
& R:=-c \cdot \sin (\gamma) \quad R=-4.000 \text { in } \quad T:=2 \cdot P \quad T=2.000 \text { in } \\
& S:=R-Q \quad S=0.268 \text { in } \quad U:=Q+R \quad U=-8.268 \text { in }
\end{aligned}
$$

2. Use equation 4.22 c to find values of θ_{4} for the open and crossed circuits.

$$
\begin{array}{lll}
\text { OPEN } & \theta_{41}:=2 \cdot \operatorname{atan} 2\left(2 \cdot S,-T+\sqrt{T^{2}-4 \cdot S \cdot U}\right) & \theta_{41}=142.667 \mathrm{deg} \\
\text { CROSSED } & \theta_{42}:=2 \cdot \operatorname{atan} 2\left(2 \cdot S,-T-\sqrt{T^{2}-4 \cdot S \cdot U}\right) & \theta_{42}=-169.041 \mathrm{deg}
\end{array}
$$

3. Use equation 4.18 to find values of θ_{3} for the open and crossed circuits.

OPEN	$\theta_{31}:=\theta_{41}+\gamma$	$\theta_{31}=232.667 \mathrm{deg}$
CROSSED	$\theta_{32}:=\theta_{42}-\gamma$	$\theta_{32}=-259.041 \mathrm{deg}$

4. Determine the magnitude of the instantaneous "length" of link 3 from equation 4.20a.

$$
\begin{array}{lll}
\text { OPEN } & b_{1}:=\frac{a \cdot \sin \left(\theta_{2}\right)-c \cdot \sin \left(\theta_{41}\right)}{\sin \left(\theta_{41}+\gamma\right)} & b_{1}=1.793 \text { in } \\
\text { CROSSED } & b_{2}:=\left|\frac{a \cdot \sin \left(\theta_{2}\right)-c \cdot \sin \left(\theta_{42}\right)}{\sin \left(\theta_{42}+\gamma\right)}\right| & b_{2}=1.793 \text { in }
\end{array}
$$

5. Find the position vector \mathbf{R}_{B} from the definition given on page 162 of the text.

OPEN

$$
\begin{array}{ll}
\mathbf{R}_{\mathbf{B} 1}:=a \cdot\left(\cos \left(\theta_{2}\right)+\mathrm{j} \cdot \sin \left(\theta_{2}\right)\right)-b_{r}\left(\cos \left(\theta_{31}\right)+\mathrm{j} \cdot \sin \left(\theta_{31}\right)\right) \\
R_{B 1}:=\left|\mathbf{R}_{\mathbf{B} 1}\right| & R_{B 1}=3.719 \mathrm{in} \\
\theta_{\mathrm{B} 1}:=\arg \left(\mathbf{R}_{\mathbf{B} 1}\right) & \theta_{\mathrm{B} 1}=40.707 \mathrm{deg}
\end{array}
$$

CROSSED

$$
\begin{array}{ll}
\mathbf{R}_{\mathbf{B} 2}:=a \cdot\left(\cos \left(\theta_{2}\right)+\mathrm{j} \cdot \sin \left(\theta_{2}\right)\right)-b_{2} \cdot\left(\cos \left(\theta_{32}\right)+\mathrm{j} \cdot \sin \left(\theta_{32}\right)\right) \\
R_{B 2}:=\left|\mathbf{R}_{\mathbf{B} 2}\right| & R_{B 2}=2.208 \text { in } \\
\theta_{\mathrm{B} 2}:=\arg \left(\mathbf{R}_{\mathbf{B} 2}\right) & \theta_{\mathrm{B} 2}=-20.145 \mathrm{deg}
\end{array}
$$

